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Abstract
In this review, we summarize implications of the acid sphingomyelinase/ ceramide system in 
ischemic stroke. Acid sphingomyelinase catalyzes the formation of the bioactive sphingolipid 
ceramide which coalesces into membrane platforms and has a pivotal role in inflammation, cell 
signaling and death. Cerebral ischemia increases acid sphingomyelinase activity and elevates 
brain ceramide levels, which has been associated with the exacerbation of ischemic injury and 
deterioration of stroke outcome. In view of the fact that lowering acid sphingomyelinase activity 
and ceramide level was shown to protect against ischemic injury and ameliorate neurological 
deficits, the acid sphingomyelinase/ ceramide system might represent a promising target for 
stroke therapies.

Stroke

Background
Ischemic stroke, defined as an acute neurological deficit caused by the thromboembolic 

occlusion of a brain-supplying artery, is a leading cause of death and disability among adults 
worldwide [1]. The available treatment strategies for acute ischemic stroke (AIS) aim for 
recanalization of the occluded vessel by means of systemic thrombolysis and/ or mechanical 
thrombectomy. Recombinant tissue-plasminogen activator (rtPA) is a thrombolytic which 
is delivered intravenously (i.v) and the only pharmacological intervention approved by 
the US Food and Drug Administration (FDA) in 1996 after rtPA treatment was shown to 
reduce disability and mortality when delivered within up to 4.5 hours following stroke 
[2, 3]. Because of this short time window, only a small percentage of stroke patients (up 
to 30 percent, depending on health care system) benefits from intravenous thrombolysis. 
Recanalization can also be achieved by endovascular mechanical thrombectomy with a 
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stent retriever which is indicated in case of proximal large vessel occlusions [4]. The first 
device used for this procedure received FDA approval in 2004 [5]. Thrombectomy is mostly 
performed in addition to thrombolysis [6]. According to American Heart Association/
American Stroke Association guidelines from 2018 this procedure is recommended within 
6 hours after onset of stroke symptoms [7]. Both intravenous thrombolysis and mechanical 
thrombectomy may induce side effects, such as brain hemorrhages [8, 9]. There is a clear 
need for treatments that allow promoting stroke recovery when the time window for acute 
treatments has exceeded.

Pathophysiology of ischemic stroke
The occlusion of a brain-supplying artery results in focal cerebral ischemia. Focal 

cerebral ischemia is characterized by a central core region with strongly compromised 
cerebral blood flow (CBF) that is surrounded by the so called penumbra, an area that is still 
viable and has a CBF that is below functional thresholds [10].

Major pathological events that occur during cerebral ischemia are massive excitatory 
neurotransmitter release (specifically of glutamate) associated with peri-infarct 
depolarizations occurring within minutes, inflammatory responses peaking after 24 hours 
to a few days and delayed neuronal injury that is most prominent in the first days but 
progresses over weeks resulting in secondary neurodegeneration and brain atrophy [11].

These pathophysiological events are directly initiated by the cerebral hypoperfusion. 
The impaired delivery of glucose and oxygen to the brain leads to mitochondrial dysfunction 
and a reduced synthesis of adenosine triphosphate (ATP) [12]. The depletion of ATP causes 
an impaired function of Na+/K+-ATPases. Consequently, neurons and glia cells depolarize 
and excitatory amino acids such as glutamate are released which accumulate in the synaptic 
space since uptake is also compromised, leading to an overactivation of N-methyl-D-
aspartate (NMDA) receptors and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) receptors. Further, as Na+ and Cl- enter the cell, water follows passively which leads 
to cell swelling. The overactivation of glutamate receptors induces a cellular calcium influx 
that triggers the activation of calcium-dependent proteases, endonucleases and lipases [13]. 
The calcium-mediated activation of nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase catalyzes superoxide production which mediates cell death [14]. The release of 
damage-associated molecular pattern (DAMP) molecules from dying neurons activate 
resident microglia that produce inflammatory cytokines such as the tumor necrosis factor 
α (TNF-α), interleukin 1 (IL-1) and interleukin 6 (IL-6) [15-20]. The expression of adhesion 
molecules such as the intercellular adhesion molecule 1 (ICAM-1) on cerebral endothelial 
cells is increased allowing the infiltration of inflammatory cells such as neutrophils that 
further exacerbate brain damage [21, 22]. Further, the matrix metalloproteinase 9 (MMP9) 
disrupts the integrity of the blood-brain-barrier (BBB) by degradation of the basal lamina 
and tight junctions, consequently leading to edema formation and possibly hemorrhagic 
transformation [23-27].

Failed strategies for ischemic stroke treatment
Despite extensive research and promising data from pre-clinical stroke model, a plethora 

of supposedly neuroprotective compounds targeting specific elements of the ischemic 
cascade have failed in clinical trials. For reasons of space, we only touch a few examples here. 
Several trials assessed the potential benefit of calcium antagonists after preclinical data 
indicated that blocking of calcium channels reduces infarct size and brain edema [28, 29]. The 
Very Early Nimodipine Use in Stroke (VENUS) trial has approached this with nimodipine, a 
calcium channel blocker that is used to prevent the occurrence of subarachnoid hemorrhage 
(SAH) related vasospasms. The VENUS trial enrolled 454 patients, which were treated within 
6 hours after stroke onset. No differences were observed between the treated group and the 
placebo group at trial termination [30]. Likewise, the Flunarizine in Stroke Treatment (FIST) 
trial analyzed the effect of the calcium channel blocker flunarizine, which is clinically used 
for treating migraine. 331 patients were enrolled and treatment started within 24 hours 
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after stroke onset. Flunarizine was not superior to placebo in this study [31]. Other studies 
similarly evaluated nimodipine or flunarizine, all with lack of clinical benefits [32].

NMDA receptors antagonists have been designed because of the high glutamate 
concentrations released in ischemic tissue that exacerbate brain injury [33-35]. The efficacy 
of the NMDA antagonist aptiganel hydrochloride was investigated in a trial with 628 
patients who were treated within 6 hours after stroke. The treatment was not efficacious 
and due to cognitive side effects raised serious safety concerns [36]. The Glycine Antagonist 
in Neuroprotection (GAIN) trial examined the efficacy of another NMDA antagonist called 
gavestinel and enrolled 1367 patients that were treated within 6 hours after symptom onset. 
Also, gavestinel failed to alleviate functional outcome [37], as did studies with other NMDA 
receptor antagonists [32].

Since inflammation is a crucial element in stroke pathology, efforts have been made to 
attenuate the inflammatory response after stroke. Based on observations that mice deficient 
for ICAM-1 were protected from ischemia-reperfusion injury [38], a monoclonal murine 
ICAM-1 antibody called enlimomab was tested in 625 patients who received the antibody or 
placebo within 6 hours after stroke onset. Enlimomab was not effective, but was associated 
with an elevated mortality rate [39]. Another attempt to dampen the inflammatory response 
after stroke was the delivery of a humanized antibody called rovelizumab which targets the 
β2-subunit of the lymphocyte function–associated antigen-1 (LFA-1) and macrophage-1 
antigen (Mac-1) which bind to ICAM-1. The antibody was well tolerated but the trial was 
halted at an interim analysis because a beneficial effect could not be detected [40]. In the 
meantime, concerns have been raised about the mouse mutants used for examining effects of 
ICAM-1 knockout. While membrane bound ICAM-1 is not detectable, soluble forms of ICAM-
1 are still present in the serum of these mice [41]. Based on these insights, ICAM-1 null 
mice with a deletion of the entire coding region of ICAM-1 have been developed, which did 
not reveal any beneficial effects of ICAM-1 deficiency in ischemic stroke models. Specifically, 
there was no difference in infarct size compared to wildtype mice and the disruption of the 
blood-brain-barrier was even more pronounced in ICAM-1 null than wildtype mice [42].

Additionally, a large variety of neuroprotective agents acting including free radical 
scavengers, nitric oxide inhibitors, AMPA antagonists, GABA agonists, sodium channel 
blockers or gangliosides have been studied in clinical stroke trials, all without benefits [43].

Acid sphingomyelinase/ ceramide system

Synthesis and structure of the acid sphingomyelinase
Acid sphingomyelinase (ASM) is a lysosomal phosphodiesterase which is encoded by 

the sphingomyelin phosphodiesterase gene (SMPD1) that is expressed on chromosome 
11p15.1-p15.4 [44].

ASM is synthesized as an N-glycosylated 75 kDa pre-pro-enzyme, which is targeted 
to the endoplasmic reticulum (ER) where the N-terminal signal peptide is cleaved 
which leads to the formation of the 72 kDa pro-enzyme [45, 46]. This precursor is post-
translationally subjected to glycosylation inside the Golgi complex [47]. Lysosomal ASM 
(L-ASM) acquires high mannose oligosaccharides, whereas secretory ASM (S-ASM) has a 
more complex glycosylation composition [45, 48]. L-ASM is targeted to the lysosome via 
mannose 6-phosphate receptor or sortilin-mediated pathways and binds Zn2+ ions during 
this trafficking process [45, 48, 49]. It is further proteolytically processed at the C-terminus 
which is necessary for the enzyme to obtain its catalytic activity [50]. S-ASM is released from 
the cell via the Golgi secretory pathway and additionally requires extracellular Zn2+ for its 
activation [48]. The crystal structure of mature ASM revealed that the enzyme is composed 
of an N-terminal saposin domain, a C-terminal metallophosphoesterase catalytic domain 
with two Zn2+ ions and a prolin-rich connector domain [51, 52]. Sphingomyelin binds to ASM 
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by positioning its ceramide-phosphate group at the Zn2+ center [51]. The catalytic activity of 
ASM is dependent on an acidic pH and its attachment to membrane surfaces that is mediated 
by electrostatic forces [51].

Functional inhibitors of ASM (FIASMAs)
Several antidepressants such as amitriptyline, fluoxetine and nortriptyline are 

functional inhibitors of ASM (FIASMAs) [53]. Antidepressants were long believed to act 
via inhibition of monoamine reuptake. While fluoxetine is a selective serotonin reuptake 
inhibitor, amitriptyline preferentially inhibits serotonin and noradrenalin reuptake and 
nortriptyline preferentially inhibits noradrenalin reuptake [54]. However, tianeptine is 
a serotonin reuptake enhancer [55]. The monoamine mechanism for the induction of 
antidepressant effects was challenged by observations that amitriptyline and fluoxetine 
reduced ASM activity and ceramide concentration, inducing neurogenesis and behavioral 
recovery in a mouse model of depression in wildtype mice but not ASM deficient mice [56]. 
These experiments clearly identified a critical role of the ASM/ ceramide system as target for 
antidepressants.

Despite their structural heterogeneity, FIASMAs have lipophilic and weakly basic 
properties in common [53]. As lysosomotropic compounds, FIASMAs passively enter the 
lysosome through the lysosomal membrane, become protonated in this acidic compartment, 
accumulate and interfere with the attachment of ASM to the lysosomal membrane, 
consequently leading to a proteolytic degradation of ASM by lysosomal proteases [53, 57-
59]. Treatment with FIASMAs does not induce complete ASM degradation [56, 60]. It is not 
clear yet if the remaining ASM activity originates from lysosomes but a basal ASM activity 
might be necessary to prevent pathologies resembling Niemann-Pick disease that is caused 
by genetic ASM deficiency [53, 61]. The simultaneous treatment with multiple FIASMAs 
results in an amplified inhibition of ASM [62].

FIASMAs do not generally abrogate the activity of all lysosomal hydrolases. Yet, 
desipramine, chloroquine and chlorpromazine were also shown to inhibit the lysosomal 
enzymes acid ceramidase (AC), acid lipase and phospholipases A and C [53]. Since FIASMAs 
are capable of passively diffusing through the blood-brain barrier (BBB) [62], they are 
attractive tools not only in the treatment of depression, but potentially also of ischemic and 
degenerative brain disease.

ASM and ceramide signaling in experimental ischemic stroke

The sphingomyelinase pathway is activated by stress stimuli for instance in response 
to irradiation, acute systemic inflammation induced by lipopolysaccharide (LPS) or upon 
release of reactive oxygen species (ROS) or pro-inflammatory cytokines such as the 
tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) [63-67]. Upon activation, 
ASM is translocated from the lysosomes to the extracellular leaflet of the cell membrane, 
bringing it in close proximity to its substrate sphingomyelin [68, 69]. ASM then hydrolyzes 
sphingomyelin producing ceramide and phosphorylcholine. Due to its biophysical properties 
ceramide coalesces into microdomains that fuse and form large ceramide-enriched 
membrane platforms with a diameter of 200 nanometer up to several micrometer [70]. 
Ceramide-enriched membrane platforms induce the spatial reorganisation and clustering of 
membrane proteins and receptors, leading to the amplification of their elicited cell signals 
[71]. Ceramide-rich membrane platforms are critically involved in induction of apoptosis 
and growth inhibition, besides others [70].

Experimental studies provided evidence for the significance of the ASM/ ceramide 
system in ischemic stroke (Table 1). In mice subjected to 60 minutes transient proximal 
middle cerebral artery occlusion (MCAO), ASM activity and ceramide level were significantly 
increased in the ischemic cerebral cortex after 6 hours reperfusion [72]. Ceramide was not 
increased upon MCAO in ASM knockout mice [72]. ASM deficiency reduced infarct size, 
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improved neurological deficits and inhibited the production of inflammatory cytokines [72]. 
Primary cortical neuronal cultures from ASM knockout mice exhibited less vulnerability to 
glutamate-induced toxicity [72]. Intracerebroventricular administration of xanthogenate 
tricyclodecan-9-yl (D609), an inhibitor of the phosphatidylcholine (PC)-specific 
phospholipase C that catalyzes the formation of ASM-activating diacylglycerol (DAG) [73, 
74], 30 minutes before MCAO and 2 hours after reperfusion prevented the increase of ASM 
activity and ceramide level, dampened pro-inflammatory cytokine production, attenuated 
neuronal damage and improved post-stroke behavior [72]. Interestingly, the ceramide 
increase in ischemic stroke is strictly linked to reperfusion. Thus, ischemic mice revealed this 
increased ceramide level in ischemic tissue only when transient (30 minutes) proximal but 
not permanent proximal MCAO was induced [75]. Yu et al. did not observe any alterations in 
sphingomyelin content, thus excluding sphingomyelin hydrolysis as the ceramide source in 
this case of mild focal cerebral ischemia and postulating that ceramide was rather generated 
by de novo biosynthesis because intermediate products of this alternative pathway for 
ceramide generation such as dihydrosphingosine and dihydroceramide were increased 
[75]. In rats exposed to 90 minutes transient proximal MCAO, ceramide levels increased 
in the thalamus by 190% and in the entorhinal cortex by 175% after 6 hours reperfusion, 
which was prevented when FK506 was administered 5 minutes after MCAO induction [76]. 
Complementary findings were made in an in vitro model of ischemia. Human neuroblastoma 
cells exposed to low oxygen concentrations and serum starvation revealed increased ASM 
activity and ceramide level after 30 minutes of reoxygenation under conditions resulting 
in apoptotic cell injury [76]. Preincubation with FK506 counteracted the ceramide increase 
and apoptosis induction [76]. FK506 is neuroprotective in several experimental stroke 
models [77-79]. FK506 has prominent immunomodulatory effects [80]. In the ischemic 
brain, FK506 was shown to downregulate pro-inflammatory cytokines and dampen the 
activation of astrocytes [81, 82]. In retinal ischemia, FK506 reduced leukocyte accumulation 
[83]. In a model of chronic bilateral cerebral ischemia induced by bilateral carotid artery 
occlusion (BCAO) in rats, ASM activity and ceramide level were unchanged at day 1 after 
BCAO and significantly increased at day 3, 7 and 14 in the frontal cortex, corpus callosum, 
internal capsule and globus pallidus [84]. Ceramide was found in glial fibrillary acidic protein 
(GFAP)-positive astroglia [84]. An increase of ceramide and a decrease of sphingomyelin 
was noted in the hippocampus 30 minutes and 24 hours after 5 minutes of BCAO in gerbils 
[85], indicating that ceramide was produced via the sphingomyelinase pathway. Ceramide 

Table 1. ASM and ceramide signaling in experimental ischemic stroke
 

Reference Species Stroke model Main observations 

[72] Mice 60 minutes transient 
proximal MCAO  

Ceramide and ASM activity increased in the cerebral cortex of 
wildtype mice after 6 hours reperfusion. ASM deficiency or ASM 
inhibition by D609 protected from ischemia/ reperfusion (I/R) 

injury. 

[75] Mice 

30 minutes transient 
proximal MCAO or 

permanent proximal 
MCAO  

Ceramide increased in the ischemic tissue after 24 hours 
reperfusion due to de novo synthesis but not after permanent 

MCAO. 

[76] Rats 90 minutes transient 
proximal MCAO 

Ceramide increased in the thalamus and entorhinal cortex after 6 
hours reperfusion. FK506 prevented ceramide production and 

apoptosis. 

[84] Rats Chronic BCAO Ceramide and ASM activity increased in the frontal cortex, corpus 
callosum, internal capsule and globus pallidus at day 3, 7 and 14. 

[85] Gerbils 2 minutes or 5 minutes 
transient BCAO 

Ceramide increased and sphingomyelin decreased in the 
hippocampus 30 minutes and 24 hours after 5 minutes BCAO but 

not after 2 min BCAO. 
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accumulation depends on the severity of the ischemic episode. No ceramide changes were 
observed after 2 minutes of BCAO [85].

Effects of ASM inhibitors in experimental ischemic stroke

Experimental studies have also investigated the utility of FIASMAs in stroke treatment 
(Table 2). In rats exposed to 60 minutes transient proximal MCAO, fluoxetine reduced 
infarct volume and ameliorated motor deficits [86]. A low dose of fluoxetine (1 mg/kg) was 
neuroprotective when administered (i.v.) at 30 minutes post-stroke, but at 9 hours post-
stroke a high dose (10 mg/kg) was necessary for the induction of tissue survival and motor 
recovery [86]. Even more delayed treatment after 12 did not confer neuroprotection or 
enhance motor deficits [86]. In rats treated with fluoxetine at 5 mg/kg or 10 mg/kg (i.v.) 
6 hours post-stroke, inflammatory responses were reduced, demonstrated by a decrease 
in the activation of the nuclear factor kappa light-chain enhancer of activated B-cells (NF-
κB), a reduction in microglia activation and a reduction in brain neutrophil infiltration [86]. 
The authors confirmed the anti-inflammatory effects of fluoxetine in primary microglial cells 
or primary neutrophils treated with lipopolysaccharide (LPS) and reported a fluoxetine-
mediated reduction in NF-κB activation and pro-inflammatory cytokine gene expression 
levels [86]. Post-ischemic hyperactivity in gerbils was reduced by pretreatment with 
fluoxetine intraperitoneally (i.p.) administered at doses of 10 mg/kg, 20 mg/kg or 40 mg/
kg 30 minutes before 5 minutes of BCAO [87]. High dose fluoxetine pretreatment at 40 mg/
kg (i.p.) for 3 consecutive days before BCAO also increased neuronal survival in the CA1 
hippocampal area [87]. Mice receiving fluoxetine in the drinking water (120 mg/l) from 
day 3 to day 28 after photothrombotic stroke revealed a reduction in final stroke size [88]. 
In the peri-infarct cortex, the ceramide level was increased at day 3 and 7 post-stroke due 
to de novo synthesis and not ASM activation [88]. In this study, fluoxetine did not improve 
neurological recovery [88]. After focal cerebral ischemia in rats induced by endothelin-1 
injection fluoxetine delivery via miniosmotic pumps (10 mg/kg) for 4 weeks starting on 
day 7 did not enhance motor function [89]. Neurological outcome and infarct volume were 

Table 2. Effects of ASM inhibitors in experimental ischemic stroke

Reference Species Stroke model Main observations 

[86] Rats 60 min transient 
proximal MCAO 

Fluoxetine administration 9 hours post stroke at 10 mg/kg (i.v.) 
protected from I/R injury and improved behavioral outcome at day 

2.  

[87] Gerbils 5 minutes transient 
BCAO 

Pretreatment with fluoxetine at 40 mg/kg (i.p.) for 3 days before 
stroke promoted neuronal survival in the hippocampus and 

pretreatment with fluoxetine 30 minutes before stroke at 10 mg/kg, 
20 mg/kg or 40 mg/kg (i.p.) reduced post-ischemic hyperactivity at 

day 4. 

[88] Mice Photothrombotic stroke   

Ceramide increased at day 3 and 7 in the peri-infarct cortex due to de 
novo synthesis. Fluoxetine delivered via drinking water (120 mg/l) 

from day 3 to 28 reduced the infarct size but did not improve 
functional deficits at day 7 and 28.  

[89] Rats 
Intracortical and 

striatal injections of 
endothelin-1 

Fluoxetine administration from day 7 at 10 mg/kg (via miniosmotic 
pumps) did not improve functional deficits after 2 and 4 weeks of 

treatment. 

[90] Rats 120 minutes transient 
proximal MCAO 

Fluoxetine administration from day 2 at 5 mg/kg did not affect the 
infarct size and behavioral outcome after 10 days of treatment. 
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not altered in rats exposed to 120 minutes transient proximal MCAO that were treated with 
fluoxetine at 5 mg/kg (i.p.) for 10 days from day 2 [90].

Effects of ASM inhibitors in clinical stroke trials

Due to the lack of safety concerns, ASM inhibitors have been studied in clinical trials. In 
a placebo-controlled study in ischemic stroke patients exhibiting hemiparesis or hemiplegia, 
fluoxetine (20 mg/day) initiated between day 5 and day 10 post-stroke and continued for 90 
days in addition to physiotherapy enhanced motor recovery [91], suggesting that fluoxetine 
(20 mg/day) modulates brain plasticity. Indeed, another study in patients with hemiparesis 
showed that even a single dose of fluoxetine (20 mg) 14 days after stroke modulated cerebral 
motor activation and enhanced hand motor function [92]. The effect on motor function after 
a single bolus injection excludes that motor effects are attributed to the enhancement of 
the patients’ mood that normally requires a longer treatment time [91]. Further, treatment 
with fluoxetine (10 mg/day gradually increased to 40 mg/day) or nortriptyline (25 mg/
day gradually increased to 100 mg/day) for 12 weeks within the first 6 months after stroke 
increased the probability of survival irrespective of whether the patient suffered from 
depression at enrollment or not [93]. In patients with stroke-associated neuropathic pain 
without depressive symptoms, 4 weeks of amitriptyline treatment (25 mg/day gradually 
increased to 75 mg/day) induced pain relief [94].

There have also been studies lacking recovery promoting effects. In stroke patients with 
persistent neurological deficits treated with placebo or fluoxetine (20 mg/day) starting 2 
days to 15 days post-stroke for 6 months, fluoxetine reduced the incidence of depression 
but increased the incidence of bone fractures [95]. Importantly, fluoxetine did not influence 
neurological outome or stroke survival [95]. A study comparing the efficacy of fluoxetine (10 
mg/day gradually increased to 40 mg/day) or nortriptyline (25 mg/day gradually increased to 
100 mg/day) for 12 weeks in depressed and non-depressed patients that had a stroke within 
6 months before, found that nortriptyline ameliorated post-stroke depression, whereas both 
antidepressants did not enhance stroke-related physical and cognitive impairments [96].

Conclusion

There is compelling evidence that the ASM/ ceramide system is critically involved in 
ischemic stroke pathogenesis. A variety of experimental studies demonstrated beneficial 
effects of ASM inhibition and ceramide lowering for ischemic brain injury. Solid evidence 
was obtained that FIASMAs reduce ischemic injury in the acute stroke phase and in addition 
experimental studies suggested that ASM inhibition may also induce neurological recovery 
in the post-acute stroke phase. Unfortunately, these studies so far did not elucidate whether 
these restorative actions were specifically attributed to the modulation of the ASM/ ceramide 
system. Further studies are needed to address this question.

FIASMAs have been used in clinics for decades which provides the advantage that possible 
side effects, toxicity and contraindications are well known. Due to their broad mechanisms 
of action, it at this stage remains speculative to assign recovery promoting actions in stroke 
patients to their inhibitory effect on ASM. Specific ASM inhibitors with negligible off-target 
effects are not available for use in humans so there is currently no alternative to achieve ASM 
inhibition in patients other than by FIASMAs [53]. Since clinical trials using FIASMAs were 
inconsistent, a generalized statement on the efficacy of FIASMAs in stroke patients cannot 
be made.
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