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Abstract
While the role of interferon during systemic disease is well known and its immune modulating 
functions and its role in antiviral activity were extensively studied, the role of IFN-I in the 
brain is less clear. Here we summarize the most important literature on IFN in homeostasis 
of the CNS and induction of an IFN response during viral infection in the brain. Furthermore, 
we present work on the roles of IFN in the developing brain as well as during inflammation 
in the brain. Lastly, we aim to enlighten the functions of IFN on the blood-brain barrier as 
well as circulation and in cognitive and psychological functions and degeneration. In short, 
CNS astrocytes produce IFN-β, which is of high relevance for homeostasis in the brain. IFN-β 
regulates phagocytic removal of myelin debris by microglia. IFN-I limits the permeability of 
the blood-brain barrier. Disruption of the blood-brain barrier facilitates entrance of peripheral 
lymphocytes and inflammation. Viral infections during vulnerable phases of embryonic 
development cause severe fetal pathology and debilitating impairments to human infants. 
The roles of IFN in these scenarios are diverse and include deficits due to overproduction of 
IFN during the developmental stage of the brain as seems to be the case in pseudo-TORCH2.

Introduction

Interferons: Interferons are cytokines, which play an essential role in the anti-pathogenic 
control and immune modulation. Interferons are separated in three groups, type I, type II 
and type III interferons. Type III interferon (IFN-λ, IL-28/29), is an essential component 
of the innate immune response. It plays an important role in the antiviral, antifungal and 
antiprotozoal defenses in the mucosa [1, 2]. Genome wide association screens revealed an 
important role of IFN-λ in the control of hepatitis C virus [3]. Type II interferon is defined 
of Interferon gamma (IFN-γ), a cytokine, which acts mainly on specialized immune cells (i.e. 
macrophages). Type I interferons (IFN-I: α, β, δ, ε, ζ, κ, ν, τ, ω) are a group of different IFN-α 
genes and the IFN-b gene. Although they all bind to the same receptor, IFN-α receptor chain 
1 (IFNAR1), the induced signal can be very different depending on the kinetic and affinity 
of the different Interferon-α subtypes [4]. The major function of IFN-I is the direct antiviral 
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activity against a broad range of viruses [5]. Beside this, IFN-I is an important activator of the 
innate and adaptive immune system. However, IFN-I can also induce inhibitory signals (i.e. 
IL-10 and PD-1L) and thereby dampen the immune activation [6].

Interferon induction: Upon viral infections, usually a type I interferon (IFN-I) response 
is induced. Pattern recognition receptors (PRRs) located at the cell surface, in the cytoplasm 
and in the endosomes recognize foreign nucleic acids and non-nucleic-acid pathogen-
associated molecular patterns (PAMPs). Most important inducers of IFN-I are Toll like 
receptors 3, 4, 7, 8, and 9, and the cytosolic PRR, MDA-5, Cardif and cGAS [7-9]. A complex 
network of downstream signaling molecules including the transcription factors of the IFN 
regulatory factor (IRF) family leads to transcription of IFN-α and IFN-β. They bind to the 
cytosolic IFNAR receptor and cause transcription of IFN-stimulated genes (ISG), thereby 
limiting viral life cycle in infected cells and causing an anti-viral state in bystander cells [10].

Antiviral activity: Almost all nucleated cells can respond to IFN-I. Upon IFN-I signaling 
several antivirally active genes are induced. One of the first active ISGs is the myxovirus 
resistance (Mx) protein, targeting incoming capsids prior to replication in case of Mx1 or 
preventing nuclear entry of HIV-1 in case of Mx2, both ultimately causing nucleocapsid 
degradation [11]. Active at the stage of viral translation, 2, 5-oligoadenylate synthetase (OAS) 
activates RNase L, which degrades viral RNA [12, 13]. Proteinkinase R (PKR) phosphorylates 
eukaryotic initiation factor 2 (eIF2α) which limits translation of cellular and viral proteins 
[14]. Replication of retro- and some DNA viruses can be blocked by sterile alpha motif and 
HD-domain containing protein 1 (SAMHD1), which decreases the cell dNTP pool. The last 
step in the viral life cycle is escape from the cell. The ISG Tetherin traps virions of many 
enveloped viruses by anchoring them to the host cell.

Systemic autoimmunity: Beside its importance in the control of pathogens, IFN-I plays 
various roles during autoimmune diseases. In systemic lupus erythematosus (SLE) elevated 
levels of IFN-I are well recognized and are thought to contribute to pathogenesis [15]. Since 
long a role of interferon was described in type I diabetes [16]. In animal models onset of 
diabetes could be inhibited by blocking interferon gamma [17]. Also type I interferon can 
accelerate onset of type I diabetes [18-20]. Such hyperactivation of the immune response 
can be induced by strong activation of pattern recognition receptors [21]. In fact, a mutation 
in IFIH1 (Interferon Induced With Helicase C Domain 1) coding for MDA5, a sensor of viral 
nucleic acids and important inducer of type I interferon, is associated with increased onset 
of type I diabetes [22, 23] or SLE [24].

Interferons in central nervous system (CNS) homeostasis: First evidence for constitutively 
expressed type I IFN in the healthy brain was provided by Goldmann et al. [25] in a mouse 
model, showing that Usp18 deficient microglia failed to downregulate IFN induced genes, 
resulting in a hyperactive IFN-I state. Low level IFN-β production enhances activation 
of microglia and phagocytosis of myelin debris and apoptotic cells in the CNS, thereby 
diminishing inflammation. Endogenous production of IFN-β by microglia was also shown 
in a myelin oligodendrocyte glycoprotein - experimental autoimmune encephalomyelitis 
(MOG-EAE) model were microglia was apparent in inflamed lesions associated with 
myelin debris [26]. On the other hand, complete absence of IFN-β was accompanied with 
neurodegeneration [27]. These data implicate that fine-tuning of IFN signaling is important 
not only during infection but also for brain homeostasis.

Interferon induction and viruses in the brain

Microglia are resident macrophages in the CNS and play an important role in physiological 
and immunological processes in the brain. Furthermore, they are the main producers of IFN-I 
in the CNS following HSV-1 infection [28]. Astrocytes respond to a variety of neurotropic 
viruses; i.e. Rabies virus, vesicular stomatitis virus and Theiler’s murine encephalomyelitis 
virus, with IFN-β production [29]. In fact, astrocytes were shown to express TLR3, which 
leads to production of IFN-I via phosphorylation of IRF3 [30]. In line, infection of the brain 
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with a Rabies virus leads to fast induction of IFN-I [31]. In an animal model of simian and 
human immunodeficiency viruses (SIV and HIV respectively) infection, IFN-α production can 
be detected in the brain [32]. In a mouse model of La Crosse virus (LACV) infection, where 
IFN-b producing cells could be visualized, it was seen that both, microglia and astrocytes were 
able to produce IFN-b [33]. Studies on human cerebral organoids (COs), containing a variety 
of developing neurons revealed that LACV is capable of infecting neurons, which increases 
apoptosis in the cell cultures [34]. Responses in cells varied, depending on developmental 
stage, revealing that committed neurons, expressing lower levels of IFN-stimulated genes 
(ISGs) underwent apoptosis at a higher rate. Therefore, neuronal maturation increases the 
susceptibility of neurons to LACV-induced apoptosis, due to lower responsiveness to virus-
induced IFN [34].

Upon brain infection of the lentiviruses, human and feline immunodeficiency viruses 
(HIV-1 and FIV, respectively), neuronal injury, inflammation, and neurobehavioral 
abnormalities can occur [35]. In a separate study, it was shown that interferon-induced 
genes act on the human brain microvascular endothelial cells. This might at least partially 
explain blood-brain barrier dysfunctions during HIV infection [36]. Transcriptomic network 
analyses showed a preponderance of genes involved in IFN-I signaling, which was verified 
by increased expression of the IFN-I-associated genes, Mx1 and CD317, in brains from HIV-
infected patients [35]. In vivo studies of animals infected with the FIV strains, FIV(ch) or 
FIV(ncsu), revealed that FIV(ch)-infected animals displayed deficits in memory and motor 
speed compared with the FIV(ncsu)- and mock-infected groups [35].

Also reovirus infection can induce IFN-I in the brain [37]. Following intracranial (i.c.) 
inoculation with either serotype 3 (T3) or serotype 1 (T1) reovirus, increased expression 
of IFN-α, IFN-β, and myxovirus-resistance protein 1 (Mx1; a prototypical IFN-stimulated 
gene) in mouse brain tissue [37]. Lack of this IFN-I response accelerated lethality of mice, 
suggesting a protective role of IFN-I in the brain [37]. In line, the coronavirus mouse hepatitis 
virus (MHV) induced IFN-b in the brain, which was important for control of the infection 
[38]. MDA5 sensing of ssRNA was required for recognition of MHV and induction of IFN-I in 
microglia [38].

Interferon accumulation in the developing brain

Dependent on the stage of pregnancy certain infections, known as TORCH (toxoplasmosis, 
rubella, cytomegalovirus, herpes simplex virus) and other viral infections, like parvovirus 
B19, Varicella and Zika virus severely affect the fetus. Beside a number of other symptoms, 
CNS abnormalities like microcephaly, hydrocephalus, and cerebral calcification are common.

Zika virus has recently received attention, as it causes severe fetal pathology and 
debilitating impairments to human infants, including fetal death, brain lesions, in utero 
growth restriction, and microcephaly [39, 40]. A recent study used porcine animal models 
and found in animals with no birth defects high IFN-α blood plasma levels one month after 
birth, while affected offspring showed dramatic IFN-α shutdown during social stress [41]. 
They therefore concluded that fetal Zika virus infection altered type I IFN response and 
molecular brain pathology, which persists after birth in offspring in the absence of congenital 
Zika syndrome [41].

Neural crest cell (NCC) migration is mandatory for normal cerebral cortex development 
and mutations in the DCX (double cortex X-linked) gene, results in abnormal neuronal 
migration resulting in microcephaly and developmental delay [42]. Recently Pallocca et 
al. [43] have shown in a migration inhibition of neural crest (MINC) assay, that prolonged 
exposure to IFN-β affects migration of NCC at low pM concentrations. Thus, congenital 
exposure to IFN-β during a vulnerable stage of development contributes to a variety of CNS 
abnormalities as described in TORCH infection. A genetic disease described as Pseudo-TORCH 
2 (PTORCH2) underscores this assumption. PTORCH2 is characterized by homozygous 
truncating mutations in the USP18 gene in one family [44] or compound heterozygous 
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mutations observed in another family [45] leading to complete absence of the USP18 protein 
and impaired regulation of IFN-I expression. Patients presented with a variety of neurological 
symptoms including microcephaly, calcification, thrombocytopenia and others. Similarly, 
USP18 deficient mice show neuropathological symptoms and hydrocephalus [46]. Aicardi-
Goutières syndrome (AGS 1-7) is a group of inflammatory diseases with a variety of severe 
neurological symptoms, elevated IFN-α activity in the cerebrospinal fluid (CSF) and blood 
and increased IFN-stimulated gene (ISG) signatures in peripheral blood, in the absence of 
infection [47]. Therefore, these diseases are also known as interferonopathies. Mutations in 
genes encoding proteins involved in nucleotide sensing or nucleotide metabolism are related 
to one of the seven AGS phenotypes: TREX1 (AGS1), RNASEH2A (AGS2), RNASEH2B (AGS3), 
RNASEH2C (AGS4), SAMHD1 (AGS5), ADAR1 (AGS6) and IFIH1 (AGS7). Impaired nucleotide 
metabolism which may interfere with self- and non-self-nucleic acid discrimination together 
with enhanced proinflammatory IFN-I and ISGs may explain why certain autoimmune 
diseases occur in patients with AGS, as for instance systemic lupus erythematosus (SLE) 
in AGS1, AGS6 and AGS7 or Diabetes type 1 (T1D) in AGS1 and AGS3. Additionally, certain 
mutations in IFIH1 predispose to SLE or T1D [48].

Interferons in modulating inflammation in the brain

Recent findings have revealed distinct roles for IFN-I and IFN-γ in the recruitment 
of immune cells to the CNS and highlighted the importance of this process for brain 
maintenance and protection and/or repair [49]. Interferon therapy is one treatment option 
for multiple sclerosis. The benefits of IFN-b therapy were demonstrated in several studies. In 
a three-year, open-label study, IFN-b-1a significantly slowed the progression of whole-brain 
and gray matter atrophy, and of T1-hypointense LV accumulation, when compared with the 
control group [50]. While the precise molecular mechanism of IFN-I therapy in MS patients 
remains to be shown, several studies suggest, that it might be related to modification of the 
blood-brain barrier [51]. IFN-b therapy was further shown to act via JAK-STAT pathway [52], 
and phosphorylation was proposed as a marker of disease activity since it is upregulated 
in peripheral blood mononuclear cells (PBMC) during active phases of the disease [53]. 
Additionally, IFN-ß therapy non-responders showed a greater activation in the JAK-STAT 
signaling pathway with elevated IFNAR1 and pSTAT1 levels in monocytes [53].

In another autoimmune disease, namely systemic lupus erythematosus (SLE), IFN-I is 
believed to be a hallmark of disease and high levels of IFNs as well as IFN-stimulated genes 
(ISGs) persist chronically in patients [54]. Upregulation of ISGs is often due to IFN-γ, which is 
upregulated in some SLE patient groups [55, 56]. However, the IFN signature in SLE patients 
is quite complex and IFN-α is the most abundant in SLE patients [54], while also the IFN-Is 
IFN-β and IFN-ω are elevated in SLE patients blood [57]. Interestingly, it was suggested that 
neurotoxic lymphocytes are activated by IFN-α and thereby could mediate CNS damage in an 
IFN-I dependent manner [54, 58].

Role of interferon on blood-brain barrier and circulation

The blood-brain barrier protects the CNS from pathogens [59]. It is the gatekeeper for 
molecules and cells passaging and consists of the highly specialized brain microvascular 
endothelial cells, which are connected via tight and adherens junctions, associated with 
pericytes and surrounded by endfeet of astrocytes [60]. Changes in the blood-brain barrier 
are hallmarks of several diseases, including the pathogenesis of multiple sclerosis (MS). 
Beside the immunomodulatory function of IFN-β there is increasing evidence that IFN-β 
directly effects the blood-brain barrier in several species including humans [51]. Also IFN-III 
can protect the brain from infection. A recent study using West Nile virus infection showed, 
while IFN-III did not act directly antiviral, it decreased the blood-brain barrier permeability. 
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Therefore, IFN-III protected the brain from viral spread and improved survival of mice [61]. 
On the other hand, the type II IFN, IFN-γ is secreted by Natural Killer (NK) and activated T 
cells and is a major signal for the recruitment and activation of leukocytes to sites of infection. 
It therefore enhances leukocyte trafficking, in a CXCL10 mediated manner, and thereby 
indirectly disrupts the blood-brain barrier as occurs in Rabies virus infection [62]. However, 
also direct effects of IFN-γ on vascular endothelia dysregulating barrier functions have been 
reported in vitro [63]. Disruption of the blood-brain barrier seems to facilitate entrance for 
circulating pathogens into the CNS, however, it can be required for cellular immunity and 
complete pathogen clearance from the CNS [64].

Interestingly IFN-I were shown to modulate the choroid plexus during aging [65]. By 
using multiorgan genome-wide analysis of aged mice, Baruch et al. found that the choroid 
plexus shows an IFN-I-dependent gene expression profile that was also found in aged human 
brains. Blocking IFN-I signaling within the aged brain partially restored cognitive function 
and hippocampal neurogenesis and reestablished IFN-II-dependent choroid plexus activity 
[65]. In line, preconditioning with poly(I:C) protects against cerebral ischemic damage 
[66]. Poly(I:C) treatment, which induced IFN-β in astrocytes and microglia, maintained the 
paracellular and transcellular transport across the endothelium and attenuated the drop 
in transendothelial electric resistance [66]. In line with this study, TLR-activation led to 
induction of interferon regulatory factor (IRF)-mediated transcription in the brain, which 
correlated with ischemic resistance. Using mice deficient in IRF3 or IRF7 the authors could 
prove the importance of IFN induced genes in this process [67].

Role of IFN-I in cognitive and psychological functions and degeneration

Sickness behavior and cognitive dysfunction occur frequently in virus-infected 
individuals. In a recent study, Blank et al. found that behavioral alterations were specifically 
dependent on brain endothelial and epithelial IFN-α receptor chain 1 (IFNAR1) [68]. 
Mechanistically the endothelia-derived chemokine ligand CXCL10 mediated behavioral 
changes through impairment of synaptic plasticity [68]. In line with these findings IFN-I 
treatment can induced depression as a side effect. This is seen in patients, which are treated 
with IFN-I as hepatitis C virus (HCV) therapy. In a recent study 15 genes that are associated 
with the development of severe depression, were upregulated during the standard therapy 
of HCV with IFN-α and ribavirin [69]. The onset of depression correlated with serum levels of 
brain-derived neurotrophic factor [70]. These findings suggest that the effect of IFN-α-induced 
immune activation on depression may be explained in part by alterations in neuroprotective 
capacity [70]. In line with these data additional studies suggest that the degeneration of 
axons containing serotonin and noradrenaline is involved in the pathophysiology of 
depression [71]. An immune histochemical study showed that IFN-α induced decreases 
in the density of serotonergic axons in the ventral medial prefrontal cortex and amygdala 
and decreases in the density of noradrenergic axons in the dorsal medial prefrontal cortex, 
ventral medial prefrontal cortex, and dentate gyrus [71]. Also cognitive functions of the 
brain can be modulated by IFN-I. A mouse study, where HIV is inoculated into the brain of 
mice, shows that HIV induces IFN-α in brains of these mice, which correlated with working 
memory errors for mice with HIV infected macrophages [72].

Pro inflammatory cytokines like Interleukin-1 β (IL1) and tumor necrosis factor α 
(TNF-α) have been found to be important regulators of sleep [73, 74]. Chronic insomnia 
was further shown to be related to increased IL-6 levels as well as a shift from nighttime 
to daytime IL-6 and TNF-α secretion [75]. Furthermore, IFN-α treated HCV patients show 
reduced sleep continuity and depth and induced a sleep pattern consistent with insomnia 
[76]. Therefore, sleep disturbances can relate to altered levels of inflammatory mediators.
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Conclusion

Under physiological conditions, CNS astrocytes produce IFN-β, which is of high relevance 
for homeostasis in the brain, by regulating phagocytic removal of myelin debris by microglia 
and integrity of the blood-brain barrier. Neurotropic viruses, including La Crosse virus 
(LACV), infect the brain and are battled against by innate immune responses of microglia 
and astrocytes, the production of IFN-α and/or –β, and followed by an adaptive immune 
response. Disruption of the blood-brain barrier seems to facilitate entrance of peripheral 
lymphocytes and is therefore often required for complete pathogen clearance from the CNS. 
However, inflammation in the brain can also cause neurological impairment and whenever 
neurological defects remain is dependent on the infecting virus itself as well as viral loads 
and presumably constitution, and lastly the genetic background of the host. Viral infections 
during vulnerable phases of embryonic development cause severe fetal pathology and 
debilitating impairments to human infants. The roles of IFN in these scenarios are diverse 
and include deficits due to overproduction of IFN during the developmental stage of the 
brain as seems to be the case in pseudo-TORCH2. Genetic mutations causing a chronic 
production of IFN-α in the cerebrospinal fluid cause sever neurological symptoms as in 
Aicardi-Goutières syndrome (AGS) and are characterized by a IFN-stimulated genes (ISGs) 
signature in the peripheral blood. Lastly, altered levels of IFNs are involved in autoimmune 
diseases as in systemic lupus erythematosus and furthermore can cause psychological and 
cognitive impairments.

Dissection of the various effects of IFN-I in the brain is still demanding. A broad range 
of phenotypes in interferon mediated or accompanied diseases is well and long term 
documented in humans compared to the experimental conditions in the inbred mice. 
However, in mice compared to the human, the immunological conditions directly in the brain 
can be approached experimentally, hopefully revealing mechanistic insights into associated 
pathologies.
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