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Abstract
The consumption of dairy products, particularly of low fat milk, has been shown to be associated 
with the occurrence of Parkinson’s disease. This association does not necessarily reflect a 
pathophysiological role of milk intake in the development of Parkinson’s disease. Nevertheless, 
the present review discusses a potential mechanism possibly mediating an effect of milk 
consumption on Parkinson’s disease. The case is made that milk is tailored in part to support 
bone mineralization of the suckling offspring and is thus rich in calcium and phosphate. Milk 
intake is thus expected to enhance intestinal calcium phosphate uptake. As binding to fatty 
acids impedes Ca2+ absorption, low fat milk is particularly effective. Calcium and phosphate 
uptake inhibit the formation of 1,25(OH)2D3 (1,25-dihydroxy-vitamin D3 = calcitriol), the 
active form of vitamin D. Calcium inhibits 1,25(OH)2D3 production in part by suppressing the 
release of parathyroid hormone, a powerful stimulator of 1,25(OH)2D3 formation. Phosphate 
excess stimulates the release of fibroblast growth factor FGF23, which suppresses 1,25(OH)2D3 
formation, an effect requiring Klotho. 1,25(OH)2D3 is a main regulator of mineral metabolism, 
but has powerful effects apparently unrelated to mineral metabolism, including suppression 
of inflammation and influence of multiple brain functions. In mice, lack of 1,25(OH)2D3 and 
excessive 1,25(OH)2D3 formation have profound effects on several types of behavior, such as 
explorative behavior, anxiety, grooming and social behavior. 1,25(OH)2D3 is produced in human 
brain and influences the function of various structures including substantia nigra. In neurons 
1,25(OH)2D3 suppresses oxidative stress, inhibits inflammation and stimulates neurotrophin 
formation thus providing neuroprotection. As a result, 1,25(OH)2D3 is considered to favorably 
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influence the clinical course of Parkinson’s disease. In conclusion, consumption of milk could in 
theory accelerate the downhill course of neuronal function in Parkinson’s disease by lowering 
1,25(OH)2D3 formation. However, substantial additional experimentation is required to define 
the putative causal role of 1,25(OH)2D3 in the pathophysiology of Parkinson’s disease and its 
sensitivity to milk consumption.

Introduction

Several studies uncovered an association of milk consumption and risk of Parkinson’s 
disease [1-8]. According to analysis of 2 large prospective cohort studies (n = 80,736 and 
48,610, resp., follow up 26 and 24 years, resp.), consumption of skim and low fat milk was 
more influential than consumption of full fat milk [2]. The association does not necessarily 
reflect a causal role of milk consumption in the pathogenesis of Parkinson’s disease. Instead, 
consequences of Parkinson’s disease may impact on milk consumption. For instance, early 
loss of smell (anosmia) during the course of Parkinson’s disease [9] may in theory influence 
eating habits of the patient. Moreover, a common cause could in theory account for Parkinson’s 
disease and alterations of eating habits. Nevertheless, the observation of an association 
may reflect a causal relationship and deserves considerations about potential underlying 
mechanisms. The present review discusses the possibility that milk consumption triggers 
Parkinson’s disease by interference with the formation of calcitriol or 1,25-dihydroxy-
vitamin D3 (1,25(OH)2D3) [10-12], which not only stimulates intestinal and renal Ca2+ and 
phosphate transport [10, 12], but has a multitude of effects unrelated to mineral metabolism 
including neuroprotection [13].

Milk consumption enhances intestinal calcium and phosphate uptake thus 
suppressing formation of 1,25(OH)2D3, a major regulator of mineral metabolism

In order to support bone mineralization of the suckling offspring, milk is rich in calcium 
phosphate [8]. Thus, milk consumption is expected to enhance intestinal uptake of calcium 
and phosphate.

Calcium and phosphate uptake impacts on formation of 1,25(OH)2D3, a powerful 
regulator of mineral metabolism [10-12]. 1,25(OH)2D3 is generated from vitamin D by 
hydroxylation to 25(OH)D3 [10, 11] followed by second hydroxylation to 1,25(OH)2D3 
[10, 11, 13, 14]. The second hydroxylation is accomplished by a 25-hydroxyvitamin D3 
1α-hydroxylase (1α-hydroxylase) [10, 11, 15], which is stimulated by calcium- and phosphate 
deficiency and parathyroid hormone [11-13, 16, 17]. Phosphate excess up-regulates 
fibroblast growth factor 23 (FGF23) [12, 18], which activates the co-receptor Klotho [19-21], 
a powerful inhibitor of 25-hydroxyvitamin D3 1α-hydroxylase [19]. Thus excess phosphate 
suppresses 1,25(OH)2D3 formation and thus further phosphate accumulation [18, 22, 23]. 
Hypercalcemia inhibits 1α-hydroxylase by suppressing release of parathyroid hormone 
[11-13, 16, 17]. The sensitivity of 25-hydroxyvitamin D3 1α-hydroxylase to calcium- and 
phosphate aims to adjust the 1,25(OH)2D3 formation exactly to the requirements of mineral 
metabolism. Further factors regulating 1,25(OH)2D3 formation include dehydration [24], 
volume depletion, mineralocorticoids, lithium, high fat diet, iron deficiency, CO-releasing 
molecule 2 (CORM-2) [25], leptin, catecholamines, tumor necrosis factor alpha (TNFα) 
and transforming growth factor beta 2 (TGFβ2) [13, 26-29]. To the extent that any of those 
regulators of 1,25(OH)2D3 formation is modified by milk consumption, it could contribute to 
the impact of milk consumption on Parkinson’s disease.   Moreover, in theory alterations of 
calcium and phosphate homeostasis may affect the development of Parkinson’s disease by 
mechanisms other than formation of 1,25(OH)2D3.

© 2020 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG
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1,25(OH)2D3 participates in the regulation of multiple processes seemingly unrelated 
to mineral metabolism

1,25(OH)2D3 is not only a powerful regulator of mineral metabolism but participates 
in the regulation of diverse further functions [13], including inflammation and immune 
response [30-33], glucose metabolism [34], platelet activation [35], suicidal cell death 
[36-42], as well as neuronal function and survival [43-45]. Moreover, 25-hydroxyvitamin 
D3 1α-hydroxylase is expressed and thus 1,25(OH)2D3 produced in several extra-renal 
tissues including dendritic cells/macrophages, lymph nodes, thymus, skin (keratinocytes, 
hair follicles), placenta, lung, colon (epithelial cells and parasympathetic ganglia), stomach, 
pancreatic islets, adrenal medulla and brain [13, 46-54].

The 1,25(OH)2D3-binding vitamin D receptor (VDR) regulates the expression of as many 
as 500-1000 genes, which are involved in the regulation of a wide variety of cellular functions 
including transport, growth, differentiation and apoptosis [13, 55, 56].

1,25(OH)2D3 is generated in the brain and influences neuronal function and survival

Neurons, microglia and pericytes in several structures of the brain (including prefrontal 
cortex, hippocampus, cingulate gyrus, thalamus, hypothalamus, and substantia nigra [13, 
48]) express 25-hydroxyvitamin D3 1α-hydroxylase and are thus capable to generate 
1,25(OH)2D3 from 25(OH)D3 [46-48, 57]. Neurons are further able to produce 25(OH)D3 from 
cholecalciferol [57]. Similar to kidney, choroid plexus of the brain expresses klotho [19], 
which presumably participates in the regulation of cerebral 1,25(OH)2D3 formation.

Neurons, microglia and pericytes may further express the vitamin D receptor (VDR) and 
are thus sensitive to 1,25(OH)2D3 [58]. Upon binding of 1,25(OH)2D3 the VDR enters nuclei 
and modifies the expression of a wide variety of genes [58]. VDR-regulated genes detected 
in hippocampus include CCAAT/enhancer-binding protein beta (CEBPB), Peripheral 
myelin protein 22 (PMP22), Plasma membrane calcium-transporting ATPase 3 (ATP2B3), 
Glutamate receptor AMPA 3 (GRIA3), Neurotrophic Receptor Tyrosine Kinase 2 (NTRK2), 
DNA Methyltransferase 3 Alpha (DNMT3A), Tenascin R (TNR), and Glutamate ionotropic 
receptor NMDA type subunit 2A (GRIN2A) [13, 59], genes implicated in the pathophysiology 
of Parkinson’s disease [60-67]. As 1,25(OH)2D3 is a powerful regulator of neuronal gene 
expression, it has been considered a neurosteroid [57].

1,25(OH)2D3 confers neuroprotection, an effect in part due to counteraction of oxidation, 
inflammation, and vascular injury, as well as up-regulation of neurotrophins, improvement 
of metabolism and favorable influence on cardiovascular function [13, 44, 68].

1,25(OH)2D3 stimulates differentiation of dopaminergic neurons [68-70] leading to 
reduced expression of Neurogenin-2 (NEUROG2), a marker of immature dopaminergic 
neurons [69]. 1,25(OH)2D3 up-regulates N-cadherin [70], tyrosine hydroxylase, catechol-O-
Methyltransferase (COMT) [69, 70], dopamine synthesis and dopamine metabolism [68-70]. 
1,25(OH)2D3 supports the survival of dopaminergic neurons by up-regulation of glial cell-
derived neurotrophic factor (GDNF) and its receptors [71, 72].

In neuroblastoma cells, 1,25(OH)2D3 has been shown to decrease cell proliferation and 
to stimulate differentiation [73]. 1,25(OH)2D3 has further been shown to up-regulate nerve 
growth factor (NGF) expression [73], TGFβ2 expression [74] and protein kinase C (PKC) 
activity [74]. 1,25(OH)2D3, has been shown to down-regulate myc expression [75].

1,25(OH)2D3 stimulates expression of several neurotrophic and neuroprotective factors 
including neurotrophin 3 (NT-3) [76], brain-derived neurotrophic factor (BDNF) [76], glial 
cell-derived neurotrophic factor (GDNF) [76], ciliary neurotrophic factor (CNTF) [76], and 
neuroprotective cytokine IL-34 [77]. The neurotrophic factors support neural cell survival 
and differentiation [76]. 1,25(OH)2D3 thus supports growth, survival, proliferation and 
differentiation of neurons and of neural stem cells [68]. Vitamin D deficiency may compromise 
neuronal development, dopamine transport and metabolism [78].
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1,25(OH)2D3 may counteract inflammation, demyelination and neuron loss [79, 80]. 
1,25(OH)2D3 decreases nitrite formation and oxidative stress [81]. Conversely, 1,25(OH)2D3 
may support formation of neural stem cells, oligodendrocyte precursor cells and 
oligodendrocytes [79]. 1,25(OH)2D3 may down-regulate pro-inflammatory mediators, such 
as interferon gamma (IFN-γ), granulocyte macrophage colony-stimulating factor (GM-CSF), 
macrophage inflammatory protein 2 (MIP-2) as well as interleukins 6 (IL-6) and 17A (IL-
17A). Conversely, 1,25(OH)2D3 may up-regulate anti-inflammatory interleukins 4 (IL-4) and 
10 (IL-10) [79, 81]. 1,25(OH)2D3 suppresses activity of T-cells [82]. 1,25(OH)2D3 is a powerful 
suppressor of cyclooxygenase (COX) [83, 84], an inflammatory enzyme apparently involved 
in the pathophysiology of Parkinson’s disease [85].

Further mechanisms invoked in the cerebral effects of 1,25(OH)2D3 include up-regulation 
of Beclin1 and of B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratio [80], 
Amyloid beta (Aβ) – scavenger receptor low density lipoprotein receptor related protein 
(LRP-1) [86], sphingosine kinase activity and thus the sphingosine-1-phosphate (S1P)/
ceramide (Cer) ratio [72], as well as downregulation of lipid modified form of microtubule-
associated proteins 1A/1B light chain 3B (LC3-II) [80], p38 mitogen-activated protein 
kinases (p38-MAPK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal 
kinase (JNK) activation [81], the ratio p38-MAPK/activating transcription factor 4 (ATF4) 
[72] and endoplasmatic reticulum (ER) stress damage [72].

1,25(OH)2D3 may further be effective by modifying cytosolic Ca2+ activity in neurons and/
or glial cells [58, 87-89]. 1,25(OH)2D3 has been shown to up-regulate Ca2+ -binding protein 
in the pineal gland [90]. 1,25(OH)2D3 may further be effective by suppressing glucocorticoid 
sensitivity of the brain [91].

Table 1. 1,25(OH)2D3-regulated molecules and mechanisms suggested to participate in the pathophysiology 
of Parkinson´s disease (for references see text)  

 CCAAT/enhancer-binding protein beta (CEBPB) 
 Peripheral myelin protein 22 (PMP22) 
 Plasma membrane calcium-transporting ATPase 3 (ATP2B3) 
 Glutamate receptor AMPA 3 (GRIA3) 
 Neurotrophic Receptor Tyrosine Kinase 2 (NTRK2) 
 DNA Methyltransferase 3 Alpha (DNMT3A) 
 Tenascin R (TNR) 
 Glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A) 
Molecules Neurogenin-2 (NEUROG2) 
 N-cadherin 
 Tyrosine hydroxylase 
 Catechol-O-Methyltransferase (COMT) 
 Glial cell-derived neurotrophic factor (GDNF) and its receptors  
 Neurotrophin 3 (NT-3) 
 Brain-derived neurotrophic factor (BDNF) 
 Ciliary neurotrophic factor (CNTF) 
 Interleukin IL-34 
 Cyclooxygenase (COX) 
  
 Anti-oxidation 
 Anti-inflammation 
Mechanisms Protection against vascular injury 
 Anti-apoptosis 
 Differentiation of dopaminergic neurons 
 Dopamine synthesis, transport and metabolism 
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1,25(OH)2D3 influences behavior and mood: In mice, excessive 1,25(OH)2D3 leads to 
an amazing increase of exploratory behavior and to a shortening of floating in the forced 
swimming test which reflects decreased depression [92]. Vitamin D deficiency downregulates 
explorative behavior and leads to anxiety, aberrant grooming, submissive social behavior, 
social neglect and maternal cannibalism [93-95]. Vitamin D deficiency before birth impacts 
on murine self-grooming [96]. Vitamin D receptor (VDR) deficiency exerts similar effects as 
Vitamin D deficiency [94, 97-102]. 1,25(OH)2D3 similarly affects human behavior [44, 45], 
emotions [103] and anxiety [103]. Vitamin D deficiency may trigger [104, 105] and vitamin 
D supplementation may counteract [106-108] depression. Vitamin D deficiency fosters 
the development of bipolar disorder and schizophrenia [103, 109-111]. 1,25(OH)2D3 may 
influence extraversion [112], social phobia, cluster C personality disorders and suicide risk 
[111, 113]. Seasonal variations of sun exposure may alter cutaneous vitamin D formation 
and thus trigger seasonal affective disorders [106-108, 114]. Vitamin D deficiency during 
brain development may foster [115] and vitamin D supplementation may counteract 
[110] development of schizophrenia. Vitamin D supplementation may further reduce ± 
3,4-methylenedioxymethamphetamine (Ecstacy) toxicity [59]. Human behavior [116, 117] 
as well as age-related decline of cognitive function and appearance of depression [116] are 
affected by certain VDR gene variants.

Conclusions

At least in theory, skim milk may accelerate development and progression of Parkinson’s 
disease by suppression of 1,25(OH)2D3 formation. 1,25(OH)2D3 is generated in the brain 
and influences neuronal function and survival by a variety of mechanisms. 1,25(OH)2D3 is 
partially effective by counteracting oxidative stress, inflammation, and neuronal cell death. 
1,25(OH)2D3 downregulates inflammatory mediators and up-regulates neuroprotective 
neurotrophins. As a result, 1,25(OH)2D3 protects against Parkinson’s disease. At least 
in theory, disease onset and clinical course of the disease could be favorably influenced 
by avoidance of skim milk and/or by treatment of affected patients with 1,25(OH)2D3 or 
synthetic VDR-agonists, such as paricalcitol, maxacalcitol, doxercalciferol, and falecalcitriol 
[118-122]. The evidence presently available is, however, suggestive, but not conclusive and 
additional experimentation is warranted further dissecting the pathophysiological role of 
1,25(OH)2D3 in onset and course of Parkinson’s disease. Moreover, further clinical studies are 
required to define the impact of milk consumption, dietary phosphate, mineral metabolism, 
1,25(OH)2D3 and/or synthetic VDR-agonists on the clinical course of Parkinson’s disease.
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