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Abstract
The antiaging protein Klotho is encoded by the Klotho gene first identified as an ‘aging 
suppressor’, in mice. Klotho deficiency is involved in premature aging and early death, while 
its overexpression is related to longevity. Klotho is mostly expressed in the kidney, but also 
in the brain, and in other organs. Two forms of Klotho, the cell membrane and secreted form, 
have pleiotropic activities that include regulation of general metabolism, oxidative stress, and 
mineral metabolism that correlates with its effect on accelerating aging. Membrane Klotho 
serves as an obligate co-receptor for the fibroblast growth factor (FGF), while secreted Klotho 
plays its role as a humoral factor. Klotho protein participates in the regulation of several 
biological activities, including regulation of calcium-phosphate homeostasis and PTH as well 
as vitamin D metabolism. The active form of vitamin D, 1,25(OH)2D3 (1,25-dihydroxy-vitamin 
D3 = calcitriol), acts as a neurosteroid that participates in the regulation of multiple brain 
functions. It provides neuroprotection and suppresses oxidative stress, inhibits inflammation 
and inflammatory mediators, and stimulates various neurotrophins. Calcitriol is involved in 
many brain-related diseases, including multiple sclerosis, Alzheimer´s disease, Parkinson´s 
disease, and schizophrenia. This review covers the most recent advances in Klotho research 
and discusses Klotho-dependent roles of calcitriol in neuro-psycho-pathophysiology.

Introduction

Aging is a complex and multifactorial process characterized by age-related changes. This 
biological phenomenon is driven by the delicate interaction between multiple genetic and 
environmental factors [1, 2]. The intrinsic complexity of aging still remains a challenge to 
be fully elucidated. However, it is well known that age-related processes are influenced by 
the alteration of particular gene expression and involve numerous intracellular signaling 
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pathways. A complex interplay between age-related genes and various signaling pathways 
needs to be better understood. It is well known that aging is characterized by an increased 
incidence of various human diseases, including diabetes [3], hypertension [4], neurological 
disorders [5], chronic kidney disease (CKD) [6], and increased risk of cardiovascular diseases 
[7]. One of the genes involved in aging is the Klotho gene, an aging suppressor gene. Therefore, 
potential medications targeting the Klotho expression may slow down the process of aging 
and postpone the onset of age-dependent diseases. The therapeutic intervention of Klotho 
may have significant clinical relevance.

Klotho gene encodes a single-pass transmembrane protein with multiple anti-
aging effects [8]. The Klotho family of proteins has three members with pleiotropic functions: 
αKlotho (known as Klotho) encoded by the main αKlotho gene, and two other Klotho proteins 
βKlotho and γKlotho, encoded by two other Klotho-related genes, β-Klotho and γ-Klotho [9]. 
The αKlotho gene is primarily expressed in the kidney, more in the distal convoluted tubule 
(DCT) cells, and less in the renal proximal convoluted tubule (PCT) cells [8-11]. Klotho is 
synthesized in large amounts in the brain by the brain choroid plexus epithelial cells [12, 13], 
hippocampal neurons, and Purkinje EC cells. To a lesser extent, Klotho is also present in 
the cerebral white matter [14]. Low expression of αKlotho has been reported in other body 
parts, including the pituitary gland, thyroid gland, urinary bladder, placenta, skeletal muscle, 
aorta, ovary, colon, pancreas, and testis [8, 15, 16].

Similar to other signaling molecules such as AMP-activated protein kinase [17-22] 
and Janus kinase 2 [23-27], Klotho is involved in various processes, including regulation of 
cellular transport systems and cell volume regulation [9, 11, 28-31]. Noteworthy, the Klotho 
gene was first identified in mice, as an ‘aging suppressor’. A Klotho gene-deficient mouse has 
phenotypes resembling human premature aging [9], while gene overexpression in mice is 
characterized by an increased lifespan [32]. The mouse klotho (mKL) gene and the human 
αKlotho gene (hKL) are very similar [33].

Two protein molecules are produced by the Klotho gene, the membrane-bound, and 
the secreted form. Secreted Klotho protein, known as soluble or circulating Klotho, arises 
either by proteolytic cleavage of the extracellular domain of the full length αKlotho just 
above the cell surface [8, 34] or by alternative splicing of mRNA Klotho gene that generates 
a secreted Klotho isoform 70 kDa [35] (Fig. 1). Although both forms of Klotho protein have 
their distinct biological activities, most of the Klotho functions are attributed to secreted 
Klotho [9, 36] that may function in different roles, including its role as a humoral factor 
[30, 37] through an unknown plasma membrane receptor [38], and as an enzyme regulating 
the various plasma membrane glycoproteins [39, 40], and through it influencing several 
signaling pathways [41, 42]. The main function of membrane Klotho protein is to serve as an 
obligatory co-receptor for fibroblast growth factor 23 (FGF23) through forming a complex 
with FGF receptors on the cell membrane, which participates in various biological processes, 
including the regulation of Pi and 1,25(OH)2D3 metabolism, which is a critical hallmark in 
the development of chronic diseases. As many recent studies revealed, the biological effects 
of Klotho proteins appear to be much broader. The underlying molecular mechanisms of 
Klotho effects are not fully understood. However, Klotho is involved in different intracellular 
signaling pathways, as reviewed elsewhere [9, 33], such as regulating FGF23-mediated 
signaling, cAMP, p53/p21, PKC, insulin/insulin-like growth factor-1 (insulin/IGF-1), and Wnt 
signaling pathways. Klotho is involved in various different physiological and pathological 
processes. There are still poor data about the direct role of Klotho in the human central 
nervous system, brain diseases respectively. In older human community-dwelling adults, 
lower plasma Klotho has been reported to be associated with a significant increase in all-
cause mortality, including cognitive impairment, but the biological mechanisms remain 
unclear [43]. However, Klotho is critical for the maturation of oligodendrocytes, myelin 
integrity, and prevent  myelin  degeneration [44]. The neural Klotho protein can protect 
hippocampal neurons against amyloid formation, glutamate toxicity [44], and against the 
development of neurodegenerative diseases related  to aging as confirmed in mice  [45]. 
Calcitriol is an important regulator of mineral metabolism [46]. Due to its ability to induce 
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Klotho, calcitriol has anti-aging/wellness functions. Therefore, normal levels of calcitriol 
are associated with anti-aging effects [47-49]. The plasma levels of calcitriol and Klotho are 
decreased with age.

The role of Klotho in calcitriol synthesis

FGF23, a protein, is a member of the FGF19 subfamily, composed of 251-amino acids in 
length (approx. 32 kDa), synthesized and secreted by bone cells, predominantly osteoblast 
[50, 51]. FGF23 has an N-terminal fragment binding domain for the FGF receptor (FGFR) and 
a C-terminal binding domain for Klotho [52, 53]. Klotho is involved in the FGF23-signaling. 
Specifically, FGF23 requires a binary complex of membrane αKlotho protein as an obligate 
co-receptor and FGFR for activation of FGFR/αKlotho binary receptor complexes located on 
the cell membrane [54]. These FGF23/α-Klotho co-mediated activities have been implicated 
in several functions. Therefore, the cell membrane expression of both FGFR and Klotho 
proteins defines the target tissues for FGF23. Synthesis and secretion of FGF23 from the bone 
are stimulated by the parathyroid hormone (PTH), vitamin D (1,25(OH)(2)D), and by dietary 
and serum phosphate levels [55]. In the bone FGF23 synthesis is inhibited the phosphate-
regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and by 
dentin matrix protein 1 (DMP1) [56] (Fig. 2).

The Klotho/FGFR complex is obligatory for eliciting the FGF23-induced intracellular 
signaling events [57]. This pathway participates in several diseases [58-60] and controlling 
numerous biological functions, including 1,25(OH)2D3 synthesis and its breakdown. FGF23 
overexpression inhibits biosynthesis of 1,25(OH)2D3 and the renal phosphate reabsorption 
[60, 61], whereas FGF23 deficiency results in much higher levels of serum 1,25(OH)2D3, thus 

Fig. 1. Schematic diagram indicat-
ing the main functions of FGF23/
Klotho/FGFR complex in vitamin 
D production [9, 15]. The com-
plex of membrane Klotho-FGFR 
forms a  high-affinity receptor 
for FGF23 that  uses this binary 
complex to mediate intracellu-
lar signaling, including vitamin D 
metabolism. By serving as an obli-
gate co-receptor for FGF23, Klotho 
participates in vitamin D metabo-
lism. The biologically active form 
(1,25(OH)2D3) of vitamin D plays 
many important roles in the body, 
including controlling the mineral 
metabolism and influencing brain 
health. The ectodomain shedding, 
between KL1 and KL2 domains, 
of membrane Klotho by α- and 
β-secretases causes the release 
of the secreted Klotho that can be 
predominantly detected in blood, urine, and cerebrospinal fluid. FGF23/Klotho regulates the level of the ac-
tive form of vitamin D (1,25(OH)2D3) in circulation. This effect can be reached either by downregulating the 
expression levels of enzyme 1-a-hydroxylase that catalyzes the synthesis of 1,25(OH)2D3, or by upregulating 
the enzyme 24-hydroxylase that catalyzes the breakdown of 1,25(OH)2D3 into inactive calcitroic acid. See 
the figure and the text for further details.
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causing hyperphosphatemia, accompanied by soft-tissue calcification [1, 54, 55]. FGF23 
overexpression mediated hypophosphatemia is caused by down-regulating the expression 
of renal sodium-coupled phosphate cotransporter, NaPi2a, and NaPi2c [62], resulting in 
elevated phosphate excretion through the urine. The antiaging protein Klotho has a key role 
in calcium homeostasis, an effect that is realized either through 1,25(OH)2D3 inhibition or by 
other pathways [63, 64].

The FGF23/Klotho pathway regulates 1,25(OH)2D3 levels by modulating the expression 
levels of enzymes involved in the synthesis and degradation of 1,25(OH)2D3, in the kidney 
(Fig. 1). Specifically, FGF23/Klotho downregulates the 25-hydroxyvitamin D 1-α-hydroxylase 
(Cyp27b1) that catalyze the synthesis of the active form of vitamin D (1,25(OH)2D3) and 
upregulates the 1,25-dihydroxyvitamin D 24-hydroxylase (Cyp24a1) that catalyzes the 
breakdown of the 1,25(OH)2D3 into inactive calcitroic acid [65]. FGF23/Klotho pathway 
functions as a counter-regulatory phosphaturic hormone for vitamin D.

Multiple roles of 1,25(OH)2D3 in the brain

The active form of vitamin D and vitamin D receptors (VDR: vitamin D receptor; PDIA3: 
Protein-Disulphide-Isomerase, family A member 3) are reported to be expressed throughout 
the brain tissues [66], particularly in regions that are central to learning and memory. This 
has led to the paradigm that preventing calcitriol deficiency or insufficiency may have a key 
role in preserving cognitive function, indicating that 1,25(OH)2D3 may prevent, or even treat, 
age-related cognitive diseases [49, 67].

The 1,25(OH)2D3 is considered a neurosteroid that participates in multiple brain 
functions. However, the cerebral expression of 1,25(OH)2D3-associated enzymes and 
receptors remains unclear [68]. Like other nuclear steroids, within the brain, 1,25(OH)2D3 
may trigger both genomic and major auto-/paracrine non-genomic actions. An overview of 
the roles of the 1,25(OH)2D3 in the brain is presented in Fig. 3.

Fig. 2. Schematic representation 
of interplay between the FGF23/
Klotho, PTH, and Vitamin D. 
Klotho  protein participates in the 
regulation of numerous signaling 
pathways, including aging through 
phosphate and calcium regulation. 
See the text for further details.
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The role of 1,25(OH)2D3 in brain development and function
Over the last decade, numerous studies reported an important role of 1,25(OH)2D3 in 

brain development and function [49, 69]. Studies suggest 1,25(OH)2D3 plays a neuroprotective 
role through withstanding greater oxidative stress, as reported in experiments using primary 
cortical neuronal cultures and of different biomarkers of oxidative stress [69]. Additionally, 
1,25(OH)2D3 is reported to be a vital factor for the growth, survival, and proliferation of the 
neurons [69], neurotransmission, brain development, and immunomodulation [68, 70], with 
a potential to treat various neurodegenerative diseases.

1,25(OH)2D3 in the neuropsychiatric and other diseases
Optimal levels of 1,25(OH)2D3 are important for normal functions of the brain, but 

either deficient and excessive levels of vitamin D may lead to brain dysfunctioning [49]. 
The antiaging properties of 1,25(OH)2D3 are primarily attributed to its ability to induce 
Klotho. The decreased levels of 1,25(OH)2D3 are followed by a decrease  in phosphate and 
calcium plasma concentrations [39, 57], while deficient levels of phosphate and calcium 
induce 1,25(OH)2D3 formation. The hypocalcemia-induced parathyroid hormone leads 
to 1,25(OH)2D3 formation as well. Conversely, phosphate excess stimulates FGF23, which 
in turn inhibits 1,25(OH)2D3 formation. FGF23 requires Klotho to become effective [9, 
33, 71]. This vitamin has powerful effects in the brain unnecessary related to mineral 
metabolism. 1,25(OH)2D3 is involved in many processes in the brain function [49] as well as 
in neuropsychiatric diseases [49, 67, 72, 73] (Fig. 3) such as Multiple sclerosis (MS) [74], a 
progressive disease of the central nervous system (CNS), which is characterized by damage 
to the myelin sheath surrounding axons of nerve cells. The immunomodulatory effects of 
1,25(OH)2D3 have been widely reported during the last years. The results of the last study 
using the animal model of CNS inflammation reported that calcitriol downregulates both, 
blood-brain barrier disruption and local macrophage/microglia Activation, and prevents 
neuroinflammation [74]. 1,25(OH)2D3 may potentially serve as a therapy for treating MS 
patients. 1,25(OH)2D3 deficiency is closely associated with depressive symptoms, especially 
in older adults. Another neurodegenerative disease where 1,25(OH)2D3 is involved is 
Parkinson’s disease (PD). The progressive neurodegeneration in PD is characterized by 
neuroinflammation and endothelial vascular impairment. The vitamin D receptor (VDR) is 
expressed in the brain including the dopamine neurons and brain endothelial cells; however, 
its role in the regulation of endothelial biology has not been clearly characterized in terms of 
PD. A recent study reported that brain endothelial P-glycoprotein (P-gp, encoded by MDR1a 
gene) level is down-regulated in PD through the VDR-mediated pathway [75]. This result 
indicates that a dysfunctional VDR-P-gp pathway may be used as a possible target for the 
maintenance of vascular homeostasis during pathological conditions in PD. 1,25(OH)2D3 has 
also been used for neuroprotective treatment for COVID-19 [72], a disease caused by infection 
with a novel coronavirusSARS-CoV-2 [71]. Recent clinical trials suggest the importance of 

Fig. 3. The schematic view of the 
role of 1,25(OH)2D3 in the brain 
functions and some diseases fos-
tered by 1,25(OH)2D3  deficiency. 
See the text for further details.
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using 1,25(OH)2D3 supplementation to reduce the incidence of acute respiratory infection 
and the severity of the respiratory tract in COVID-19 adults and children.

The most common cause of dementia is Alzheimer’s disease (AD), a progressive 
disorder that degenerates brain cells. One of the major pathological features of AD is the 
accumulation of Amyloid-beta (Aβ). The 1,25(OH)2D3 through its nuclear hormone receptor, 
VDR, may be exploited for the treatment of Aβ pathology [73]. The mechanisms of action 
of 1,25(OH)2D3  are at least partly understood. Specifically, 1,25(OH)2D3  exerts its role via 
an interplay with glial cell line-derived neurotrophic factor (GDNF)-signaling as well as 
through restoring the downregulation of GDNF and inhibiting the phosphorylation of the 
phosphatidylinositol 3 kinase (PI3K)/protein kinase B/Akt/glycogen synthase kinase-3β 
(GSK-3β) signaling pathway. There is an association between 1,25(OH)2D3 deficiency and 
psychiatric disorders. A similar correlation has been suggested regarding 1,25(OH)2D3 and 
bipolar disorder (BD). However, in most of the studies, no significant differences in the levels 
of 1,25(OH)2D3 between BD patients and other psychiatric disorders were confirmed [67]. 
This does not rule out that an appropriate 1,25(OH)2D3 status may have a positive role in 
mood balance due to its immunomodulatory, antidepressant, and other functions.

1,25(OH)2D3 plays a role in brain metastatic cancer and acute myeloid leukemia (AML) 
[76]. A combination of 1,25(OH)2D3 and the hypomethylating agent (HMA) 5-Azacytidine 
(AZA) Increases cytotoxicity and differentiation, as well as decreases the proliferation of 
primary AML patient samples and several AML cell lines used in that study.

An ischemic stroke leads to blood-brain barrier (BBB) dysfunction, which is a physical 
and biochemical barrier that precisely maintains cerebral homeostasis. 1,25(OH)2D3 has been 
reported to protect against cerebral ischemia by maintaining BBB permeability, increasing 
the level of brain-derived neurotrophic factor (BDNF) in their brains, and decreasing 
PPARγ-mediated neuroinflammation [77]. 1,25(OH)2D3-induced regulation of GDNF/Ret 
signaling is also involved in dopaminergic neurons [78]. Hence, indicating its important role 
in dopamine physiology. Ret, a receptor  for GDNF-family ligands, is directly regulated by 
1,25(OH)2D3 through VDR in dopaminergic neurons. 1,25(OH)2D3-mediated effect via VDR 
is implied in the expression of various dopaminergic-associated genes [70], and, thus, in 
dopamine neuronal development and maturation.

Conclusion

The antiaging protein Klotho is implied in numerous processes, including the 
development of multiple-age-related diseases when deficient. Klotho has been reported 
to be involved in various biological functions and in the regulation of many intracellular 
signaling pathways [9, 33], including cAMP, p53/p21, PKC, and Wnt. Klotho is an obligatory 
cofactor for the activation of FGF23-dependent intracellular signaling. Klotho, in an FGF23-
dependent and FGF23-independent manner, participates in the regulation of 1,25(OH)2D3 
formation and phosphate and calcium metabolism [9, 11, 47, 79]. Klotho increases the 
resistance to oxidative stress and protects cells and tissues from oxidative damage [80, 81]. 
Klotho participates in the regulation of 1,25(OH)2D3. This vitamin is implied in numerous 
brain functions, under physiological and pathophysiological conditions [49, 69, 70, 72, 73, 76, 
78]. Due to its reported role in cognitive impairments and neurodegenerative diseases, the 
therapeutic use of 1,25(OH)2D3 or related agonists in the treatment of several neuropsychiatric 
disorders and other conditions may represent great potential. 1,25(OH)2D3 mediated brain 
actions could be genomic and non-genomic [49, 69]. However, the interaction of genomic 
and non-genomic processes of 1,25(OH)2D3 is largely unexplored. The detailed molecular 
mechanisms by which 1,25(OH)2D3 exerts its actions in the brain remains incompletely 
understood, especially regarding cell-specific variations and the stage of development in 
the brain. This needs further study efforts to better understand the precise mechanisms 
associated with specific functional outcomes.
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